Rapid Microwave Synthesis of β-SnWO4 Nanoparticles: An Efficient Anode Material for Lithium Ion Batteries

نویسندگان

چکیده

We report a facile synthesis of β-SnWO4 nanoparticles via microwave heat treatment using SnCl2 and H2WO4 in the presence tamarind seed powder. An X-ray diffraction analysis confirmed crystalline nature revealing cubic structure nanoparticles. The morphological features were visualized scanning electron microscope that exhibited homogenously distributed clusters nanoparticles, which further transmission microscope. micrographs also displayed some porosity. Energy dispersive spectroscopy elemental contents such as tin, oxygen tungsten same stoichiometric ratio expected by respective empirical formula. A high-resolution was used to find d-spacing, ultimately analyze structural parameters. spectrum obtained Fourier transform infrared illuminated different stretching vibrations. Additionally, Barrett–Joyner–Halenda carried out investigate N2 adsorption-desorption isotherm well govern pore size distribution. Cyclic voltammetry measurements implemented ongoing electrode reactions throughout charge/discharge for nanostructures. galvanometric curves are discussed. high specific capacitance (600 mAhg–1 at 0.1 C) excellent columbic efficiency (~100%) achieved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries.

To explore anode materials with large capacities and high rate performances for the lithium-ion batteries of electric vehicles, defective Ti2Nb10O27.1 has been prepared through a facile solid-state reaction in argon. X-ray diffractions combined with Rietveld refinements indicate that Ti2Nb10O27.1 has the same crystal structure with stoichiometric Ti2Nb10O29 (Wadsley-Roth shear structure with A2...

متن کامل

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries.

MoS(2)@CMK-3 nanocomposite consisting of confined nanosized MoS(2) in CMK-3 carbon matrix exhibits much improved cycling performance and rate capability due to the enlarged interlayer distance and favorable conductivity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crystals

سال: 2021

ISSN: ['2073-4352']

DOI: https://doi.org/10.3390/cryst11040334